
AD-A097 278 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/G 9/2
SOFTWARE REQUIREMENTS: A REPORT ON THE STATE OF THE ART.U

OCT 80 R T TEH. P ZAVE. A P CONN- G E C OLEj AFOSR-77-3181

UNCLASSIFIED AFOSR-TR-A 0320 N

'E EEEIEE

I~ 2,

UNCIASSIIID _____

W SECURITY CLASSIFICATION OF THIS PAGE (14Nenr flat. Eoierrd)

REPQR POCUMENTATION PAGE B EOR INOrHJIUTIGORM

REVORT,.1- 3 2 ~, OVT ACCESSION NO 3 RECIPIENT'S CATALOG NME

A. REPORT ONSI TAEO . TYPE OF REPORT 8 PERIOD COVRED6 OFl.JARE8,EQIREMENTS:ARPTONHESTEF
- - 6. PERFORMING ORG. REPORT NUMBER

(I ymond T./ YehA" Pamela/Zave Alex PauAAC ORGRNTnUBE(.

'~George E.Cole, Jr)-r SR-77-3181

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT, 'ASK

Department of Computer Sciences t AREA 6 'WORK UNIT 1UBR

00) University of Maryland
College Park MD 20742 23 # A2 m r
ICONTROLLING OFFICE NAME AND ADDRESS 177r h BEI

Ar Force Office of Scientific Research/NMBolling~ ~ ~ ~ ~ , AF C23211-URO AE
Ioilin

N ~ a-1,4 -O R'Si differentliron, Contro11in: Office) 15. SECURITY CLASS. (f. hi?, s

~ (1.Xn~ri'm ~ j UNCLASSIFIED
0 La.. 'IS.. DEC LASSIFIC ATO' ONGAN

IS. DISTRIBUTION STATEMENT SCaDUL thsRpr)-wf

SApproved for public release; distribution unlimited. E)IICK.;
EELECTE.-

APR2 1981'

17. DISTRIBUTION STATEMENT (of the abstract entered in, Block 20. if differentIm Beor

VS. SUPPLEMENTARY NOTES -.

19 KEY WORDS 'C,ntirue on, reverso iode if ne,-essivrv nd Identify by block niember)

. c 0 ABST PACT (Co-tini on reverse side Ifnrece.*.., and Identify tic bl ockI n,,n1.eI

Many problems arising during the development and evolution of large computer
systems can be alleviated by thorough and timely attention to requirements.
This paper surveys recent research on requirements technology which the
authors consider to promise substantial improvements over the analysis and
specification techniques that are now commonly known and used. All aspects of
requirements are considered, and points are illustrated using the requirements
documient of an early, but ambitious, real-time system. .

DD 1 JAN71 1473 UNCL.ASSIFIED YI-
SECURITY CL ASSIFICATION OF THIS PASE 114en Ditto lciereI

SI %

AOSR-T. 81 -0320

TR-949 Octot.r 1980

SOF-PARE REQUIREMENTS:

A REPORT ON

TIE STATE OF THE ART

Rayi.ond T. ;'eh, Pamela Zave.
Alex Paul Conn, and George E. Ccle, Jr.

31,Y1

Abstract

Many problems arising during the development and evolution of large
computer systems can be alleviated by thorough and timely attention to
requirements. This paper surveys recent research on requirements technol-
ogy which the authors consider to promise substantial Improvements over
the analysis and specification techniques that are now ccmmonly known and
used. All aspe::c nf requirements are considered, and points ,re illus-
trated using the requirements document of an early, but ambitious. real-
time system.

Aprovd for publio
reless

8 1 t42ri0
35ion ulimited.81 4 2 035

AIR FORCE U ' Y UF SCIENTIFIC RESSARC1 (AYSC)

NOTICE OF T .,'IITTAL TO DDC
This tech .l .l rLp ct . hi : Leen reviewed and is
approved for public rclease IAW AFR 190-12 (7b).
Distribution is unliwited.
A. D, BLOSE
Technical Information Officer

Ii
I,

I. Introduction

Statistics gathered during the past few years have produced an

alarming awareness of the enormous cost of maintaining large software

systems. If the trend continues, the data-processing industry not only

will become the most labor-intensive industry, but also will devote

most of its productivity to maintaining old, ill-structured, and diffi-

cult-to-modify software.

Furthermore, it has been shown ([Belady & Lehman 79]) that as the

complexity .tand entrop-) of a system grows, the probability increases that a

chanqe will introduce additional errors. The result is an increasingly un-

reliable system. Real danger is involved in the dependence of our

society on such systems, as illustrated recently by false alarms trig-

gered by software errors at the Strategic Command Center (reported in the

Washington Post).

Although there are many reasons for the difficulty of maintaining

software, lack of thorough attention to requirements analysis and

specification, the earliest phase of software development, is a major

one. For example, in two large command/control systems, 671 dild 95%

respectively of the software had to be rewritten after delivery because

of mismatches with user requirements ([Boehm 73]). There are also many

examples of total cancellation of projects due to lack of appropriate

requirements and feasibility analyses. Some of the more expensive cases

are the $56 million Univac-United Airlines reservation system and the U][

$217 million Advanced Logistic System ([Boehm 80]). In general, it has

been found that "design errors" (all errors made before implementation)
/

ranoe from 36% to 74Z of the total error count ([Thayer 75]). These 7 Codes

and/or

AlD t _p"'ctal

2

numbers are not the whole story, however--a design error takes 1.5 to

3 times the effort of an implementation error to correct.

We have illustrated the importance of developing a good require-

ments methodology to control maintenance costs, but there are other

equally pressing reasons. The requirements document has a unique role

in the development of a software system: it is the basis for communi-

cation among customers, users, designers, and implementers of the

system, and It is unlikely that the project will be a success unless

it represents an informed consensus of these groups. It must also carry

the weight of contractual relationships between parties that sometimes

become adversaries; in particular, the design and implementation must

be validated against it.

The costs of neglecting these functions include lack of management

control, inability to use top-down design or other software engineering

techniques, user hostility, and lawsuits. In short, because the require-

ments phase comes so early in development, it has tremendous leverage in

the quality (or lack thereof) of the development effort and the final

product.

Current approaches to requirements engineering, unfortunately, are

quite inadequate. Most of the available techniques concentrate on

functional requirements, and provide relatively weak structures for

expressing them. They offer basically tools (primarily languages),

rather than guidelines for analysis or specification.

In this paper, we suggest a systematic approach to obtaining soft-

ware requirements, and point out the existence of available results from

* other fields such as database management, artificial intelligence, and

psychology that are of great relevance to the development of a good

3

requirements document. We deal with all aspects of requirements

documents, and illustrate them with examples taken from an existing

requirements document (see below). Due to space limitations, our

discussion will be largely informal, but will guide the interested

reader to more thorough presentations elsewhere.

The AFWET system (Air Force Weapons Effectiveness Testing, ultimately

realized under the name "WESTE") was an early real-time system which

supported quantitative testing of U.S. military (conventional warfare)

capability (see Figure 1). We describe it briefly here because its

requirements document ([Air Force 65]) is a fruitful source of bad

examples and unsolved problems.

Tests were military exercises involving "test elements" such as

airplanes, ships, tanks, and ground defense positions (some playing

the role of enemy forces), confined to a circle centered on Eglin Air

Force Base in Florfda. Test elements communicated with a central site

through military standard radio equipment, plus a contractor-supplied

comunications network.

During the test, moving elements would send periodic notifications

of their positions to the central site. Mock firings of weapons would

also cause messages to be sent, supplying all relevant parameters such

as the direction of aim. The central system would simulate the battle

in real time, determining which of the mock firings would have resulted

In "kills". The results of the simulation were (a) used to display the

course of tie battle on graphics scopes for the benefit of officers in

a control room, (b) dumped onto archival storage for later analysis,

and (c) used to send "kill" notifications to "killed" test elements in

the field. They would then react with a flashing light or loud noise,

and cease to participate in the battle.

4

2.b Conceptual Modeling

In the early days of software development, machines were relatively

small and so were systems. A program served in a well-understood, well-

specified scientific domain, and thus could be written directly from a

statement of need.

As we have moved to much larger systems and a variety of application

domains, the need for precise specification of a system before implemen-

tation has increased. But the complexity of these systems demands an

additional layer of understanding, a "buffer", between the real world

and the requirements specification. This "buffer" allows an analyst

to understand the problem before he proposes a system to solve it--

an understanding that can be achieved with an unassisted mental model,

if the problem is simple enough. For complex problems, a model must

be constructed which is explicit and formal enough to be shared by a

group of people. We call such problem models conceptual models because

they are constructed at the level of human concept formulation.

One possible consequence of the lack of a conceptual model appears

in the AFWET requirements:

Choice of major subsystems shall be the responsibility of the
contractor; however, a typical range configuration may consist
of the following subsystems Space Position Subsystem... Data
Subsystem...Timing Subsystem.. .Communication Subsystem... Pro-
cessor Subsystem...Kill and Display Subsystem....

For lack of an approach to providing an introduction to, or overview of, the

AFWET problem, the requirements writers had to present part of a design

for the system!

If we accept the assumption that constructing a conceptual model is a

necessary step in gaining understanding of large, complex problems,

what do we model and how do we construct it?

We believe that conceptual modeling should be done "outside-in",

beginning with the proposed system's environment and working inward

toward the system. In many cases this will lead the analyst directly

to the requirements, since the purpose of the system is to support a

desirable mode of operation in the environment. This is particularly

true when the project is to automate existing manual procedures, because

then the computer system is a direct reflection of the current operations.

Other reasons for stressing understanding of the environment are

that it will improve communication with customers and users (who are

much more interested in their environment than your system), and

because large application programs are parts of their own environments

([Lehman 801). But possibly the most important of all, given the intrinsi-

cally evolutionary nature of large software systems ([Belady & Lehman 79]),

is that change in a system originates with change in the environment. By

modeling the environment, the analyst can study potential changes, and

possibly even provide a designer information that can be used during

design so as to acheive modularity--the property that small changes in

the environment cause correspondingly small changes in the system.

The overall structure of a conceptual model is shown in Figure 2.

The environment consists of identifiable objects such as people, airplanes,

terminals, forms and other types of data, etc. The states of these

environment entities must be represented, as must the events (an agent

makes a flight reservation, a machine overheats) which cause state changes.

The target system can be similarly divided into a state, and activities

which interact with environment events so as (ultimately) to influence

them.

6

The model is structured by relationships and constraints on all

these objects. "A is a subnet of B", "Helen and Bob are married",

"faucet must be opened before water can flow", etc., are simple examples

of constraints and relationships, but new government regulations,

hardware configuration changes, and a wide variety of other facts can

be relevant.

To collect information on the environment, personal interviews and

questionnaires are most often used. The actual modeling process can

begin with either entities or events. When starting from an event, the

information change due to occurrence of that event must be reflected into

the structure of the model. For example, a transaction "reservation

request" from a remote terminal linked to an airline reservation system

will change the available seats on a particular flight. Assuming such

information is stored in a target system database, this event will also

trigger a system activity to change the database. The state information

is thus transmitted through the interaction between the system and its

environment. Similarly, an analyst may start with entities from the

environment to build up state information, and then consider changes to

these entities so as to develop the structure of processes witin the

system. Interested readers are referred to [Yeh et a]. 79] for more

details about information collection, and to [Yeh & Zave 80] for more

examples of conceptual modeling.

Note that the "outside-in" approach is neither "top-down" nor

"bottom-up"--the model structure must be evolved in both directions.

Top-down analysis is employed when an analyst asks an interviewee to

elaborate on some previously identified feature of the environment, but

a bottom-up approach is required to collect and integrate views of

7

users in different parts of an organization.

The conceptual model is an important tool for understanding the

requirements of a system, but it is not a requirements document. The

latter must be derived from the model, but has somewhat different

properties. This will be the subject of the next section.

3. Requirements Derivation

The conceptual model should be a rich, complex information

structure--probably too much so for the purposes of the software

requirements document (SRD). For instance, a conceptual model of AFWET

might include views of the system as seen by soldiers, officers, computer

operators, and hardware maintenance personnel, and thus be highly re-

dundant. It might also model more of the environment than is needed

just to define the proposed system. This would be the case if the

AFWET analysts decided (quite correctly!) that they needed to understand

the military background and purpose of the tests they would be in-

strumenting,to assure themselves that the data they gathered and dis-

played would be useful.

Thus the SRO is derived from the conceptual model by filtering and

organizing, constantly aiming towards the "best-engineered" specification.

Explicit goals for the SRD can be found by considering the thing it will

be used for:

Many groups of people must communicate with each othe,- throuqh and

about the SRD. Therefore it must be understandable.

In order to accomodate the evolutionary nature of large systems,

the organization of'SRD must be structured so that changes can be made

with minimum effort. In a word, it must be modifiable.

Last but not least, the SRD is used to define the target system.

To do this properly it should be precise (preferably form.al), unambiguous,

complete (a particularly important aspect of completeness being the role

of the SRD in contractual obligations), internally consistent, and

minimal. A minimal specification does not over-constrain the design

9

of the system, which might exclude the best solutions to design problems.

As in most engineering situations involving multiple goals, the

above list of properties cannot all be achieved in most situations.

However, there does exist a set of mental tools and principles which

can help the analyst to meet many of them.

The crucial issue here is decomposition of complexity, also referred

to as "separation of concerns", "divide and conquer" strategy, etc. For

software development we can describe the goal of this principle via two

subgoals, namely: the "process goal" and the "product goal". The

process goal is to keep the process under our intellectual control at

all times. The product goal is to organize the product in a fashion

that allows others to comprehend the product by an amount of effort which

is proportional to the size of the product. There are three powerful

tools for decomposing complexity so as to achieve these goals (see

Figure 3).

The first tool is the notion of abstraction. The use of abstraction

allows us to suppress details and concentrate on essential properties.

Thus, we refer to something as an abstraction if it represents several

actual objects but is disassociated from any specific object. The use of

abstraction forms natural hierarchies, allowing elaboration of more and

more detail and hence providing intellectual control of the process.

The second tool is partition, i.e., representing the whole as the sum

of its parts. This tool allows us to concentrate on components or sub-

systems of the system one at a time. Partitioning makes systems modular.

Note that if each partitioned component also has an abstraction hierarchy,

then we have both a horizontal and a vertical decomposition of the system.

10

The third tool is projection, and enables us to understand a system

from different viewpoints. A projection of a system represents the entire

system, but with respect to only a subset of its properties; the perfect

physical analogy is an architectural drawing, which is a two-dimensional

view of a three-dimensional building. The notion of a "view" of database

LAstrahan et a_.'76] is another such example. Again, this tool allows us

to separate particular facets of a system from the rest and therefore

retain intellectual control.

Of course, any tool can be abused. In using the three structuring

principles above, one must be guided by the principal of "infcrmation

hidiny ([Parnas72b]) and other observations about how specifications

can be made coherent and flexible ([Parnas 79]). Arbitrary decompositions

forced on system aspects which are too interdependent will cause more

problems than they solve.

d ,,,I i"

11

4. Functional Requirements

Functional requirements describe what the target system does, and

are clearly the heart of the SRD. Section 2 introduced the notion of an

explicit model of the proposed system's environment, as an important tool

in requirements analysis (leading to the global model shown in Figure 2).

From the viewpoint of functional requirements specification, there is an

important additional advantage to having an explicit model of the environ-

ment: since interactions between the environment and target system can

then also be made explicit, it is much easier to specify the all-Important

environment/target system interface in an accurate, precise, understandable,

and yet modifiable manner.

Thus the task of functional requirements specification is to find a

formal representation for the detailed information needed to fill in Figure 2.

The major challenge is complexity, and we will classify approaches to

specification according to the primary dimension along which they decompose

structure.

4.1. Data Models

Data-oriented models concentrate on specifying the states of Figure 2--

the state of the target system will always be represented as a data structure,

and the state of the environment can be modeled as such, even though the

resulting data structure need never be implemented.

Research on database problems has led to the recognition of abstract

concepts which can be fruitfully used In data-oriented specifications of

software systems of all kinds. [Smith & Smith 79] Is a survey aimed at

non-database-specialists, and we shall use the notation presented there

for explaining the most prominent data-structuring concepts.

12

At any moment, a database or "data space" consists of a population of

"individuals" or items. A database modeling the environment of the AFWET

system ("STATE of entities in environment" in Figure 2) could contain

individuals representing test elements.

Individuals belong to (are "instances of") types, and types can be

subtypes of other types (obviously, an Instance of a type is also an

instance of all its supertypes). The type hierarchy for a database is

specified as part of the database's "type definition". Table 1, for

instance, is a type definition for the real-time simulation portion of

the AFWET system. It defines types using the syntax:

def TYPE-NAME:

end,

and the types listed after the keyword "sub" are its subtypes. Thus an

individual plane may be a member of types "B-52G", "PLANE", and "TEST-

ELEMENT". The use of types to structure data is referred to as generalization.

Individuals also have components which are needed to describe them

fully. Each component is identified with a type to which it must belong,

and the proper components of individuals of certain type are listed after

"com" in that type's definition. Thus full description of an "air-position"

(instance of type "AIR-POSITION") requires a "surface-position" and an

"altitude". Full description of a "plane" requires its "air-position"

and the "weapons" it is carrying. It also requires a "role" (friend or

foe), a component that the "PLANE" type inherits from its supertype

"TEST-ELEMENT". It is clear that the component relation is also hier-

archical, and its use to structure data is referred to as aggregation.

The state of the AFWET system (real-time simulation portion only)

13

and its environment, at any given time, is a database consistent with

this type definition (plus a great deal of read-only information, such

as models of test-element motion and weapons threats, needed for

simulation). There should be only one instance of type "BATTLEFIELD",

and its components (* means that the individual can have multiple com-

ponents of the designated type) represent the currently active "test-

element"'s. Within the system, the state of the battlefield at a given

time is represented by an instance of type "FRAME", having as components

a "time" and the "test-element"'s that were active at that time. A full

"test" is recorded in multiple "frame"'s. This is a particularly good

example of what it means to reflect the structure of the environment

within the systemi

A data model must be interfaced with processing aspects of the system.

At the very least, a set of primitive data manipulation operations should

be enumerated, and these operations should be defined in terms of a first-

order predicate language and the operations create, destroy, and modify

applied to individuals In the database. For instance, in the AFWET I

database a simulated kill should destroy a "test-element" that is a com-

ponent of the current "battlefield". Once defined, these operations can

be used as the interface between the data model and whatever higher-level

processing model is preferred (see 4.2, 4.3).

Data-oriented models, as the heart of requirements analysis and

specification, have been very successful--especially in the domain of

data- processing and business information systems. Some good examples

can be found in [Yeh et al. 79], [Roussopoulos 79], and EMittermair 80].

The primary notion used there is the semantic net, a graphical formalism

which was originally developed by artificial intelligence researchers for

representing knowledge structures.

14

4.2. Dataflow Processing Models

The most common model of processing used in conjunction with data-

oriented models is the dataflow diagram, which simply names the major

processing activities of the system, and indicates which parts of the

data model are inputs and outputs to each activity. If iterative

refinement of the dataflow diagram is supported, and activities are

defined (usually informally) in terms of data manipulation operations,

a level of expressive power sufficient for many data-processing systems

may be achieved.

The dataflow approach is central to SADT ([Ross & Schoman 77]. [Ross

77]), although there is additional emphasis on a methodology for team

cooperation. The dataflow approach is supported with automated tools in

PSL/PSA ((Teichroew & Hershey 77]). It can be extended with control

information via Petri nets ([Peterson 77]), or with resource synchronization

([Conner 79]).

The deficiencies of the dataflow model for specifying embedded

(real-time) systems are apparent in the dataflow diagram for the AF14ET

system shown in Figure 4 (the "fight" function has been added to provide

the "processing" that modifies the state of the environment). The

global events and activities in this system are continuous, and are not

activated by the appearance of a single input, or any simple combination

of inputs. At a lower level, they consist of complex combinations of

pieces of computation which must occur asynchronously and in parallel.

Dataflow as a concept is simply not powerful enough to permit

precise specification or effective decomposition of systems, such as

embedded ones, in which concurrent and asynchronous operations occur at

the requirements level.

15

4.3. The Process Model

An approach which is better suited to specification of embedded systems

emphasizes the "events" and "activities" portions of Figure 2. The

central concept is the process, an autonomous computational unit which

is understood to operate in parallel with, and interact asynchronously

with, other processes. Processes have long been used as abstractions of

concurrent activity within multiprogramming systems ([Horning and Randell

73)), and many recent articles have shown that they can be used to model

databases, monitors, functional modules, 1/0 devices, and presumably any

other identifiable structure within a computing system (e.g. [Hoare 78),

[Drinch Hansen 78]).

Formally, a process is just a "state space" (set of possible states)

and a "successor relation" which maps predecessor states onto their

possible successors. This simple concept is easily adapted to being a

digital simulation of an object (person, machine, sensor, etc.) in the

environment of a computer system.

The result of the generality of processes is that the requirements

for a system can be specified by a set of asynchronously interacting

processes, some of which represent objects in the environment, and some

of which represent objects in the target system. The environment of

AFWET, for instance, becomes a set of processes, each one simulating a

test element. All processes respond to kill messages by becoming inactive.

All processes representing test elements with weapons send firing messages

whenever their internal, cyclic, simulation algorithms decree that they

have fired a weapon. All processes representing moving test elements

periodically update their positions and send position messages to the

central system. The result is an easily constructed, easily understood

16

model with highly complex overall behavior; it is understandable simply

because it is naturalistic, being made up of semi-autonomous objects

acting in parallel, Just as the real world is.

Figure 5 shows an overall process-and-communication structure for

the simulation portion of the AFWET system. The test-element processes

are as described above. Processes representing radio towers put timestamps

on the input messages and relay them to an input-buffer process. The

input-buffer process collects into a batch all the messages relating to

the period covered by a particular simulation step, waits until all messages

from that period can reasonably be expected to have arrived, and then

passes the batch to the simulation process. This simulator computes a

new frame (and kill messages) from the old frame, the batch of messages,

and its various mathematical models. Frames are passed or, one by one to

the rest of the system, where they are stored and otherwise used. Kill

messages are relayed to the test-element processes via an output-buffer

process and the radio-tower processes.

This has been an informal description of a formal requirements speci-

fication in PAISLey (Process-oriented, Applicative, Interpretable Specifi-

cation Language, see [Zave 79a], [Zave 79b], [Zave & Yeh 80], [Zave 80)).

PAISLey isa process-oriented language aimed at embedded systems. As the

acronym indicates, its other major characteristics are that it is appli-

cative and interpretable. The advantages of applicative languages are

currently receiving well-deserved attention, and recent results and

trends-are surveyed in [Smoliar]. The most important properties of

applicative languages (for our purposes) are that they are precise and

convenient vehicles for abstraction, and that they are interpretable.

Interpretability carries with it many advantages. It means that the

17

system-plus-environment model is executable, and that it can be validated

by testing--including demonstrations of behavior for customers, and

performance simulations (if necessary). The advantages also continue

throughout development, since the environment part of the model cdn be

used as a "test bed" or "driver" during development, and the model of

the proposed system can be used as the standard for acceptance testing.

The use of an excutable model which emphasizes the active parts of

the required system can be termed the "operational" approach. The

operational approach was first taken by the SREM system and its require-

ments language RSL ((Bell et al. 77], [Alford 77], [Davis & Vick 77]).

In RSL processing paths from input stimulus to output response are

specified directly, and can be simulated for performance purposes.

Stimulus-response paths are an important aspect of operational require-

ments, of course, but are incomplete in not including explicit repre-

sentations of system states, internal synchronization, or potentially

distributed environments.

PAISLey is more complete than RSL in including states, synchronization,

and the system's environment, and it shows that the operational approach

has some striking advantages for embedded system requirements.

One advantage is that the rigor of having to make a model that "runs"

always proves to be a powerful influence against ambiguity and vagueness

in requirements. In the AFWET example, for instance, the relationship

among frames, input messages, and real time was arrived at after a great

deal of confusion. It finally became clear that: (a) simulation had to

be oriented toward increments of time rather than toward events, because

the effect of a "firing" event may occur at any point during the entire

interval that the bullet is still in the air; (b) the cost of backtracking

would be prohibitive--once a computation was done it could not be undone

**boom

18

by a late-arriving message; and (c) this meant that simulation time had

to be enough behind real time so that all messages relating to a new

frame could be assumed to have arrived when computation of the new frame

began. Timestamps are put on messages at the radio towers because there

is variable delay in the rest of the communication network, and the

slmulator must know accurately to which time a message refers (delay in

the radio communications, being nearly constant, is not a problem).

Another advantage of operational specifications is that they provide

natural structures to which performance requirements can be attached (this

is especially important for embedded systems, given the prominence of

performance in that domain). [Zave 79b] and [Zave & Yeh 80] show how

response time and feedback loop requirements can be specified formally,

simply by attaching timing attributes to functions in the specification.

In Figure 5, the timing requirements are more complex, but still repre-

sentable in the same formalism. If g is the "granularity" of the

simulation, i.e. the increment of time between frames, then the successor

function of the simulation process (which computes the next frame) must

never take lo-iger than g to evaluate. If the delay in radio communi-

cations is r, and the simulation time is to be no more than r + d + g

behind real time, then d must be the upper bound on delay in getting

messages from the radio towers to the input buffer. Finally, if the

timestamps are to be useful, the upper bound on the time it takes for any

process to read the real-time clock must be very small.

A third advantage is that operational specifications make it possible

to include resource requirements when necessary. Resource requirements

are requirements that a particular resource or quantity of a resource be

used. In AFWET the use of a time-multiplexed, fixed-delay radio communi-

19

cation link was a resource requirement*, imposed because that equipment

was already owned and installed. PAISLey offers the generality of a

complete model of computation, including asynchronous distributed com-

utation. This means that no new system problem will surprise us with

concepts unexpressible in the language.

Observations about performance and resources bring us to everyone's

major reservation about operational requirements: Aren't these actually

design specifications? Don't they say much more than should be said in

the requirements? We believe that the answer is no, for the following

reasons.

Extensive experience with requirements examples shows clearly that

the essence of true design is managing scarce resources to meet perfor-

mance goals. As long as a formalism does not force the specifier to make

unnecessary decisions about performance and resources, then it is not

forcing him to specify design rather than requirements. Fortunately, both

applicative languages and the process model are excellent in this respect.

For the "design-independence" of applicative languages, see [Backus 78]

and [Smoliar 79]; for the "design-independence" of processes, consider

this very basic example: In Figure 5, we used as many processes to

describe the central site as were logical and convenient. The design for

this system will look quite different, since it will probably have to deal

with a scarce resource problem--only one processor. The designer will

have to determine how a single processor can be multiplexed so as to im-

plement, and meet the performance requirements of, all processes at the

central site.

Another example of how the specification described by Figure 5 differs

* Actually this is an inference from the requirements document, which
is by no means clear on this point.

20

from a design concerns the real-time clock process, which "ticks" at

regular intervals and can be read by other processes. It is not techni-

cally feasible to build a single global clock which can be read fast

enough by a collection of remote sites. The design to meet this per-

formance requirement will probably entail local clocks (which can be

read fast enough) and a global synchronization protocol executed before

each test begins.

The existence of resource requirements forces us to recognize twc

distinct meanings of "design": from the "technical" viewpoint, it is

managing resources to meet performance goals, but From the "administrative"

(economic, political) viewpoint it is any properly of the system that

is not required to satisfy whoever is paying for it. From the technical

viewpoint resource requirements are premature design decisions, but

from the administrative viewpoint they are common and entirely legitimate

requirements. They should be minimized, but can never be eliminated, and

any requirements language that cannot handle them will be inadequate in

meny situations.

To summarize, operational structures do not over-constrain design

unless they select a particular solution to a problem which has other

feasible solutions. The AFWET example is rather extreme in that it

involves quite a bit of what is technically design detail, but all the

"design" decisions were forced into requirements analysis by the customer's

wishes or the technical infeasibility of other approaches.

A final, but important, property of any activity-oriented require-

ments language is its interface with data-oriented specifications.

Different as Figure 5 may seem from the data model of 4.1. the two

are actually quite compatible. The components of a "test-element" in the

21

data model are exactly the same as the components of the state of a test-

element process In the process model (see Figure 6)! This means that

the process model and the data model can be viewed as projections of the

same underlying model, which contains both, and the proposed system

model supports a similar decomposition. Given the data and process

complexity found in most large systems, compatibility between appropriate

models for them cannot receive too much attention.

'1

22

5. Nonfunctional Requirements

Requirements other than functional ones have received very little

attention, but may be an equally important part of the SRO. Since the

state of the art is very far from having a comprehensive theory or method-

ology for these requirements, we present an annotated outline, intended

to be used as a checklist of the various topics that should be at least

considered, even if not included in the SRD. (Human factors have been

omitted, because they are discussed at length in the next secticn.)

I. Target system constraints

IA. Performance
Performance is defined here to include all factors which describe
both the subjective and objective qualities of the target system.
It is thus a measurement of the "success" of the target system,
a constraint below which the system must not be allowed to fall.

IAI. Real time
In many systems, especially those which are embedded in or
connected to specialized equipment, the real-time perform-
ance is essentially a measurement of the success of the
system. For example, in AFWET, if the system is not de-
signed in some way to accept weapons firings in real time,
thenitis likely that some of the firings will be entirely
missed and the validity of the mission will oe compromised.

IA2. Other time constraints

"Other time constraints" refers to important relative timing
considerations within the target system, which relate events
to each other rather than to real time. These relationships
would normally involve precedence but might also include
information for choosing between competing activities based
on some kind of priority system. In AFWET, for example, the
computation of the lethality of a missile might not be
carried out until the trajectory has been determined, and
both the computations may be considered moe important (of
higher priority) than the movement oF an unrelated tank,
given a scarcity of computationai resources. While detailed
decisions on precedence or priority throughout the target
system may be left to the designer, there should be a means
for including critical constraints in this arca in the
requi rements.

23

IA3. Resource utilization

Closely related to the rationale for assigning precedence
constraints are the constraints on resource utilization.
A system will often be built in which the computer resources
are attached to expensive specialized equipment. Decisions
on which equipment to service in which order may very well
be directly related to the cost or importance of each item of
specialized equipment, and the performance of the system may
very well be assessed in terms of the response to the needs
of this equipment. The requirements thus should provide a
means for specifying the handling of critical equipment and
also for placing a constraint on the balanced or optimal use
of the remaining resources in the system.

IA4. Accuracy, quality, comprehensiveness

While timing and resource utilization are fundamental aspects
of performance, other factors also characterize the target
system performance. The accuracy of the detection and compu-
tation of data can be critical. In AFWET, two elements in
combat must be accurately tracked for position, both by
information that might be transmitted by the elements them-
selves or by appropriate external equipment, such as radar.
This position information must be maintained at the same
degree of precision during computations or the determination
of a "kill" condition might be erroneous.

The quality of the target system can be an important require-

ment. For example, if a CRT display is fuzzy or distorted,

then the relationships between elements might be incorrectly
interpreted by viewing personnel. Akin to quality is the
idea of comprehensiveness. If important data that could be
displayed is never made available, or not presented when it
could be a determining factor in a mission, the target system
is performing at a less-than-optimal level. The requirements
constrain the eventual design by identifying, at least in
general terms, the degree of comprehensiveness desired.
Designers can later figure out how to manipulate the data
within the quality and human factors constraints.

IB. Reliability

The reliability portion of the requirements outline has been adapted
from the presentation in [Jones & Schwarz 80], a study of multi-
processor systems. Reliability can be divided into two basic cate-
gories: availability of the physical equipment and integrity of the
information. For requirements, the concern is about "failures"
(noticeable events where the system violates its specifications)
rather than "faults" (mechanical or algorithmic defects which will
generate an error) ([Zelkowitz et al. 79]), since the means by which
the system maintains its specifld-Tevel of reliability is a concern
of the system developers, not those who write requirements. The
purpose of defining and classifying the failures is so that constraints
can be placed on the likelihood of such failures.

24

IBI. Availability

Failures that affect the availability of the system are,
in general, ones that cause one or more devices to cease
to function. Occasionally, a device will continue to
operate, but at a reduced speed. If equipment ceases
to function, we are not only interested in the duraticn
of such failures, but also, the actual impact on the system.
Today, it is much more common for critical components to be
replicated and interconnected in such a manner that the
target system continues to operate under a wide variety of
failures. The requirements will have to be able to
address the extent of degradation permissible under specified
failures and the means with which the system cones with
these problems (e.g. manual versus automatic reconfiguration).
In a system such as AFWET, the ability to transmit critical
information over more than one communication channel might
be a requirement for dealing with a failure of one of those
channels.

IBla. Definition and classification of failures that cause

degraded functioning

IBlb. Probability of each failure

IBlc. Extent of degradation due to each failure (e.g. graceful
degradation, reconfiguration, and self.-repair)

IBid. Duration of each degradation

IB2. Integrity

Failures that affect the integrity of the system are those
in which the computer is prevented from proceeding because
loss of information precludes the computation of a
valid result. When a failure does occur, the nature of the
mission dictates the necessity of recovering outstanding
requests or computations in progress. A requirement may
specify the degree to which efforts should be taken to
assure data integrity. In AFWET, trajectory and lethality
como'Itations should be completed without loTs of information.
On the other hand, an element that is not engaged in coirbat
with another' element might sustain a temporary lo.;s of
position without affecting the mission. The cost of recover-
ing from every possible loss of state can be enormous vwith
f-equent rollback points causing a significant degradation
in performance. The requirements might wisely place a
limit on the cost of recovery by identifying states that
are not critical enough to warrant a full rollback and
recovery exercise.

IB2a. Definition and classification of failures that
cause loss of state

25

IB2b. Probability of each failure

IB2c. Cost of recovery of state

IC. Security

Most of security is arguably in the realm of design, since it
pertains to specific means by which the reliability of the
system may be enhanced. However, there appear to be two areas
in which security may be an appropriate requirement. The first
is physical security, which may include, for example, all
military standards for pressurized cable, disconnectable term-
inals, safes for storing classified tapes and disks, and even
the criteria for destroying or reusing such storage media. The
operational category includes any method that must be used to
cipher, modularize, limit transmission or otherwise effect how
or where sensitive information will be available. Note that
the above physical considerations for reuse of tapes are in
some ways part of the operational category, since it is well
known that disks, for example, even when erased or overwritten
a dozen times, can be made to reveal their original (e.g.
classified) information with specialized signal differentiating
equipment.

ICl. Physical (e.g. gates, locks, safes, etc.)

IC2. Operational--protection of integrity of information

ID. Operating constraints

IDI. Frequency and duration of use

Both the frequency and duration of use are not only
important to know from a staffing and maintenance point
of view, but also from the standpoint of available
resources. If the computer equipment is, for example,
only used as part of the target system for a limited time
period, it might be provided as a general facility at
other times. Conversely, an already-existing facility
may be adequate for supporting the needs of the target
system. In a satellite probe, it might be very important
to know that a computer module could be connected to some
network and used for computational assistance when not
operating in its primary capacity.

102. Control (e.g. remote, local, or not at all)

Control is another important operating constraint in many
systems. An unmanned remote facility cannot be restarted
by personnel if a failure occurs. Depending on the ability
for personnel to reach the remote site, the equipment may
need sophisticated automatic restart and even reconfiguration
capabilities. Preventive maintenance may also not be
possible in inaccessible locations such as in satellite or
deep sea probes. In addition, the proximity of the remote

26

facility may affect the nature of interaction required,
since distant space probes experience significant trans-
mission delays due to speed-of-light limitations.

1D3. Staffing requirements

IE. Physical constraints (e.g. size, weight, power requirements,
temperature, humidity, portability, ruggedness)

The physical constraints requirements are intended to include
all factors relating to the physical placement of the equipment
in the field. In the AFWET system, the nature of the pods
connected to the wings of the aircraft placed limits on the
size, weight, power requirements, and ruggedness of the equip-
ment that could be placed onto the pods. In some applications,
even the camouflaging of the cabinets might be an important
physical constraint.

It. System development, evolution, and maintenance

In many organizations, the plan for the development, evolution, and
maintenance of the target is a separate document from the require-
ments, since a development plan is considered to be a statement of
how the requirements will be carried out. On the other hand, in
many instances, large computer systems are requested and paid for
by one group and developed and delivered by another. Constraints
on the magnitude and cost of the development effort may very well
be considered requirements to the group paying the bill. In this
section, we discuss various categories relating to the life-cycle
plan for the target system.

IIA. Kind of development

The development of target systems can be divided into two gross
categories: those efforts that are directed toward a single
delivery date at which time the completed operational system
will be furnished, and those efforts which plan to deliver
working subsets of the requirements for evaluation in the
field before embarking on a more complete version. The single
full-scale effort is often itself iterative ([Conn 80]), but
the early versions of such a system are not intended for use
by the customer. Prototyping may be required in time-critical
situations where delivering any kind of working system will
fulfill an immediate need. Similarly, in state-of-the-art
projects, careful analysis of a system shell may be needed to
evaluate human factors and to clarify the requirements. Many
software systems are almost always iterative. For example,
operating systems are usually updated on a regular basis through-
out their useful lives.

IIAl. Single full-scale development

IIA2. Iterative with prototyping

27

IIB. Scale of effort
The scale of effort is an essential factor in establishing re-
quirements for the development of a target system. In itera-
tive efforts, in which many prototypes or versions are envisioned,
resources should be allocated for personnel, equipment, and
overhead associated with the development of each version. When
development time Is included as a requirement, then an evaluation
can be made assessing the feasibility of completing the stated
goals within the proposed time frame. If an extended or advanced
development is foreseen for one or more iterations, this informa-
tion should also be incorporated into the requirements. Finally,
each version should have a plan for delivery and installation.
When equipment is to be installed in aircraft or naval vessels,
delivery and installation may be a complex technical endeavor.
And when numerous installations are already in the field, the
requirements may need to call for special procedures for handling
the complicated logistics of updating each installation.

For each iteration:

IIB1. Development time

lIB2. Development resources

IIB2a. Personnel

IIBZb. Equipment

IIB2c. Cost

1IB3. Delivery and installation (e.g. packaging, shipment, assembly
and test equipment)

IIC. Methodology

IICI. Quality control standards

"Methodology" includes all the management techniques and
procedures that assure the success of the project. Quality
control is meant to address software as well as hardware,
including the current ideas on top-down, structured, provable,
modularized, etc. software. Many organizations now include
standardization enforcement software in their compilers and
assemblers.

IIC2. Milestones and review procedures (including feasibility
studies)

Milestones and review procedures track and evaluate partially
completed systems. The milestone is an identifiable stage
of completion, which can be used to determine whether
parallel efforts are progressing on time with respect to one
another. Review procedures are used by the developers
themselves to assess the current progress of an effort. The

28

contracting agency may request a feasibility study for
Implementing a portion of or the entire system. In this
case, a milestone might reflect the point at which the
feasibility has been proven, thus enabling the initiation
of serious subsystem design efforts.

IIC3. Acceptance criteria (e.g. benchmarks)

While a completed system is supposed to in all ways fulfill
the requirements, the acceptance criteria identify specific
tests and evaluation factors by which the developed system
can be judged. Traditionally, the acceptance criteria are
the "teeth" in the contract, against which disputes are
settled. Since a target system can almost never be exhaus-
tively tested, it is critical that the acceptance tests
cover every significant combination of functions or
activities which the system is supposed to carry out
successfully.

ID. Priority and changeability

The priority and changeability category recognizes that require-
ments writers may need some way to incorporate flexibility into
the requirements. It may be very important that some requirements
be carried out, while others may represent "gold plating." When
other constraints are considered, such as cost, size, training,
development time, etc., it may be necessary to drop some of the
less critical requirements. A means for ranking requirements or
associating some weighting factor to particular facets of a
target system would be very useful. This ranking can follow
Parnas' modularization based on the likelihood of change ([Parnas723]).
If a designer is to be expected to hide, in some modular organiza-
tion, system decisions that could easily change, the information
about what might be changing must be represented in the require-
ments. Along the same lines, if a general requirement could be
satisfied by more than one entirely different solution, it may
be necessary to be able to include detailed requirements for each
of the solutions. For example, in AFWET, if the transmission of
certain information could be satisfied either by ground cables or
by microwave communication, the military specifications for each
form of transmission would have to be included in the requirements.

l1D1. Establishing relative importance of requirements

1102. Identifying factors likely to change

I12a. Ordering by changeability

1102b. Identification of alternative requirements

lIE. Maintenance

The maintenance category here is specifically meant to exclude
the evolutionary software activities that are often classified
under "maintenance". The requirements are concerned with the

29

system's breaking down and having to be brought back to
working condition. For the software, the requirements might
specify the staffinq needed or a contractual agreement for
fixing bugs. The document might list the kinds of programs
or packages that will be supplied to fix bugs, and, in addition,
what kinds of software will be embedded in the system (such as
error logging or path counters) to aid in the discovery and
tracing of errors. For hardware, it is necessary to know who
will carry out both the preventive and repair-oriented maintenance
The requirements may need to spell out standards for a minimal
set of test points at which the repairing individual may probe
and assess the operation of the circuit.

IIEl. Software

IIEla. Responsibility for fixing bugs

IIElb. Instrumentation (e.g. check points, audit trails,
driver programs, simulators)

IE2. Hardware

IIEZa. Frequency and duration of preventive maintenance

llEZb. Responsibility for repair of faults

IIE2c. Test equipment and procedures (e.g. test points)

III. Economic context of system development

Very few projects are undertaken in which cost is no object. Even in
extravagant programs, cost tradeoffs are seriously considered. However,
satisfactory economic decisions are much more likely to be made if the
cost goals and guidelines are spelled out in the requirements document.

ILIA. Cost tradeoffs

Requirements for cost tradeoffs establish guidelines for
determining whether existing equipment and software can be
satisfactorily incorporated into the target system or whether
a new effort is required. Very often this off-the-shelf equip-
ment is not ideal and does not entirely satisfy the requirements
in every respect. However, these cost-tradeoff requirements
can be used effectively to overrule other requirements if the
sacrifice is not too great. Some criteria are needed to indicate
just how important the ready-made requirement is and what might
be given up to fulfill that requirement.

It is important that the requirements convey the intended philosophy
for cost tradeoffs. The military is, in many projects, using an
approach which identifies a minimal set of capabilities to which
desired features are added until a certain cost level is exceeded.
The requirements must be able to convey just which functions are
needed at any cost and which are add-ons. Note that some projects

30

(e.g. computer toys or games) may be almost entirely a design-
to-cost consideration. Even the nature of the functions may
be relatively unimportant compared to the price at which it
can be sold. Most projects fall between the two extremes, and
the requirements must be able to indicate where the tradeoffs
are to be made.

IIIA. Utilization of existing technology versus development
of new

IIIAla. Hardware (e.g. CPU's, interfaces, peripheral

equipment)

IIIAlb. Software (e.g. operating systems,compilers)

IIA2. Primary objectives--design-to-cost versus design-to-
function

IIIA2a. Established minimal requirements for designated
levels of cost

IIIA2b. Relating alternate requirements with costs

IIIB. Cost of iterative system development

Many projects are developed iteratively, whether or not the
customer sees the intervening stages or prototypes. And al-
most all projects have milestones or baselines which indicate
the achievement of some level of operation or functionality.
Without cost limitations placed on these stages by the require-
ments, funds could be allocated to project phases in an un-
balanced manner, starving, for example, later efforts due to
disproportionate expenditures at the beginning of the project.
In addition, if prototypes are to be delivered to the customer
for interim use or evaluation, these costs should be addressed
in the requirements.

IIIBl. Cost of each prototype or milestone

IIIBla. Development cost

lIIBlb. Cost of delivery of prototype

IIIC. Cost of each instance of target system

The development effort may be directed at producing many similar
or identical target systems. Under these circumstances, the
development costs will usually be amortized over the entire
projected production run. Each instance of the target system
In this case will have costs both from materials and from the
applicable fraction of the development expenses. Any proposed
evolutionary change to the target system after delivery will
have to take into account the costs of updating each installation.

31

6. Human Factors

6.1. Introduction

The psychological factors involved in software engineering are

certainly one of the most neglected aspects of the entire discipline.

Omission of such considerations from requirements analysis and specifi-

cation may be a major reason for eventual user dissatisfaction with the

delivered product. We conjecture that many of the human factors are of

as much importance to the user as the so-called functional requirements.

Thus, consideration of the psychological impacts, both of and on the

user, in the requirements phase should have a substantial effect in

helping to deliver software products which truely meet the needs of the

user. Furthermore, an aggressive view of this facet of requirements

should have an important impact on the lifetime cost of the entire pro-

ject.

In the following sections we explore the nature and importance of

human factors as related to the requirements of a project. We shail

discuss the problems of communication between members of the user

organization and software engineers, followed by specific human factors

problems dealing with the target system's user interface. ie then review

some tools from psychology which may be used in attempting to solve some

of these problems.

6.2. The Communication Problem

Many of the problems which originate early in requirements analysis

can be attributed to lack of communication between the user community and the

software engineers. There are several well-known communication problems.

Ideas may be expressed in a vague or ambiguous manner, goals may be

contradictory or incompletely formulated, and various users may have

32

differing views of the desired system. Realization that these difficulties

exist leads to the conclusion that good requirements analysis must

depend upon intensive interaction with the user community at all authorit

levels, as well dS feedback from the software engineers concerning their

understanding of the desired system.

There are communication problems which cannot be solved simply by

verbal comninication, however, regardless of the amount of interaction

and feedbacklinvolved. In this section we shall discuss thQ problcm

of novice .ersus expert knowledge, and the problem of tacit knowledge.

These as-yet-unresearched problems may hold the key to developing systems

which are well-engineered for humans.

When considering the members of the user community, we shall continue

to use the word "user" in its broadest sense, including ail of the riernbe'S

of a user organization who will have any degree of contact with the system

at any time during its lifetime. This is certainly a broad class of

users, with varying degrees of interest in the project, but we need not

distinguish between them at this time.

Kaplan cites a rather disturbing example wherein the designer asks,

"What do you want?", to which the user responds, "What have you got?"

([Kaplan 76]). Although this is, or should be, an extreme example of

initial Interaction, it does point out some of the inherent difficulties

in user/analyst dialogues. It also makes a strong case for the need to

know the user('Shneiderman 79]). This one principle is of major importance.

for when the analyst truely knows the user (actually users at all authority

levels), then "What do you want?" will be replaced with a whole series of

ideas and questions with which meaningful discussion can begin.

It would be naive to think, however, that the analyst will find it

33

easy to "get to know" the user. One major problem is that experts "see"

quite differently from novices ([Kaplan 76]), as has been demonstrated

in studies such as the famous one involving chess masters and novices

([Simon 70]). In requirements analysis, the user is an expert in the

application domain, the analyst is an expert in software engineering, and

each is a novice in the domain of the other!

This phenomena of seeing differently is partially explained by the

compact and complex structure of the experts' knowledge. Experts have

more points of entry into their semantic structures, and they form ab-

stractions at a higher level than novices. This means that they have

the ability to make use of a number of different representation schemes

for mentally working with the same information. Thus, an expert might

be able to make use of a picture, a sketch, a map, or even a cardboard

model, whereas a novice might find the picture to be the only meaningful

representation ([Weiser 79]). So we must conclude that the choice of

model presentation is a critical factor to be considered when dealing

with novice users. In general, the process of establishing a conmon

domain of discourse should be the first matter of attention in a

user/analyst dialogue. Also, this has to take place at all levels

within the user organization, because of the different views of the users.

We know that people, whatever their organizational status, have

detailed and highly developed internal models of their working environ-

ments ([Kaplan 76]). They understand what they do, how they accomplish

their duties, and with whom or what they Interact in their performance

of daily tasks (we speak, of course, of people with a general level of

work-related competence.) Regardless of their level of expertise, however,

people know more than they can ever tell ([Polanyi 67]). When this "tacit

34

knowledge" concerns a desired software product, we are often at a loss

as to how to bring forth this information. The problem is more than

just a vagueness on the part of the user concerning desired functions

for a proposed system, because tacit knowledge is not describable by

the user. Some tacit knowledge will always exist, but much can be

brought out and made explicit.

Polani presents this example to illustrate the existence of tacit

knowledge: We are all experts at recognitionof familiar faces, yet how

many features of a familiar face can you give specific details about?

This is very difficult, even for faces with which you may be intimately

familiar. However, police artists have developed methods which allow

them to produce composite sketches of remarkable quality.

The idea of tacit knowledge is certainly not new. William Jaines,

in discussing what he called the "fringe" ([,'ames 92]),said that

"Every definite image in the mind is s'oeeped and dyed in the
free water that flows round it. With it goes the sense of its
relations, near and remote, the dying echo of whence it came
to us, the dawning sense of whither it is to lead. The signifi-
cance, the value, of the image is all in the halo or the penun:bra
that surrounds and escorts it..."

Thus, we must probe, define and refine this fringe in order to discover

some of tile tacit knowledge contained therein.

Since the users are incapable of expressing their tacit knowledge,

we should consider experimental techniques for revealing some of it.

For now we simply note that people have an innate abilityfcr nonverbal

communication, primarily with themselves. People have the capacity to

assume an "as if" stance ((Kaplan 76J)--they have the ability to assume

roles and pretend. This means that one should expect to be able to

produce worthwhile results from studies and experiments concerning human

factors engineering. This has certainly proved to be the case in

35

scientific investigations of programming languages([Basili and Reiter 79],

[Dunsmore and Gannon 79], [Shneiderman 79], [Shneiderman 80]). We will

have more to say on the subject of experimentation in the section on

psychological tools.

In summary then, the apparent requirements will vary depending upon

the view of the user. Regardless of his status within an organization,

each user will have a well-developed internal model of the environment

and his functions within it. Some of this information is readily available

in the form of immediate needs (however vaguely they may be expressed),

but some is tacit knowledge and may have to be determined experimentally.

6.3. The Target System's User Interface

In discussing the user interface requirements for a system, it is

essential to differentiate between upper-echelon management and the

end-user ([Mittermeir 79], [Mittermeir 80]). Their views of the system

at this level are sure to be different. Management will be primarily

concerned with the system's functional requirements, constraints, develop-

ment schedule, and cost. The end-user, however, may take such factors

as "correctness" for granted; he or she must work with the final product,

and wants a system which provides a comfortable environment, not a hostile

one.

The AFWET system requires displays, and so we will concentrate on

displays as a good example of various user-interface issues. Luxenberg

and Kuehn ([Luxenberg and Kuehn 69]) note that

"It is essential to display design that standard human factors
requirements be satisfied. This covers a broad range of topics
such as perception, comprehension, viewing environment, psy-
chological factors, and operator comfort."

These issues are of great importance if the system is to be acceptable

to the user community. Thus, in a requirements document it is niL iugh

36

to simply specify that the display equipment will consist of certain

kinds of devices, which is all that was done in the AFWET document. The

details which seeni to be most needed are given by Luxenberg and Kuehn

and are shown in Table 2.

The information required in each of these categories and

subcategories, however, is much more than just specifications in terms

of some absolutes or generalities, e.g., response time must be 3 seconds,

or response must be real time. The requirements document should have

proposals for testing the acceptability of the factors with the end-users.

Thus, we are immediately lead into the general area of testability and

the questions which naturally arise concerning what is or is not a test-

able requirement. Nevertheless, if there is to be a display which

queries a database, for example, then the requirements for response time

should also include either solid reasons for specifying a certain value,

or proposed experiments to determine what the needs of the end-user really

are and how this will be validated, both from the standpoint of verifying

what the need is, as well as checking that the final product meets the need.

This practice should be applied liberally across any parts of the specifi-

cation which deal with the broad area of human factors.

Thus, requirements for AFWET should contain proposals for pilot

studies of: (a) the best symbology to use for the displays; (b) the

qualities desired in such device specifics as contrast, resolution, and

flicker; (r) the best means to display a "kill". There should also he

proposals to study whether or not the display needs to run "in real time",

as stated in the AFWET document. Even a small difference in the amount

of acceptable delay can make a tremendous difference to the system's de-

signers, and it is all too easy to accept serious constraints on a user's

37

word, without questioning the real need for them. It certainly seems

plausible that observers could get as much Information from delayed or

replayed tests as from those seen in real time. In this case, probably

the crucial factor is the extent to which the observers of the displays

participate in the test as commanders, but this is nowhere mentioned in

the requirements document.

6.4. Psychological Tools

Some of the problems of user/analyst interaction have been highliqhted

in the previous sections. We believe that aggressive work on the numar

factors of a project will not only help alleviate some of the inherent

communication problems, but also provide a sound basis for a project which

is manageable in terms of schedule, cost functionality, and human accept-

ability.

Besides the obvious need for much interaction and discussion in oraer

to speak on common terms, what else can be done to help alleviate this

communication problem? Winograd discusses three different domains of

discourse and suggests that the terms used in the subject dimain be those

familiar to the user ([Winograd 79]). Other ideas presented by Kaplan

([Kaplan 76]) suggest that we can make use of the users' abilities to

assume roles, to mentally validate/reject "what if" conditions, and to

become involved in the entire process of design. He suggests that the

use of simple models works better from the viewpoint of the user than

do complicated or elaborate models. This confirms what we already krow

about expert versus novice knowledge structures. So, once a dialect has

been established, the software engineer may begin planning experiments,

pilot tests, and other interactions with actual end-users in an attempt

to bring forth tacit knowledge which may play an integral role in the

38

functioning of the desired product.

The early phases of requirements anlysis should concentrate upon

dissolving the differences discussed earlier in the ways in which experts

and novices see. Definitions (based upon the users' perspective),

intensive discussions, and notations should help make problem areas

explicit, remove bias, and thus add to the fringes of both user and analyst.

Then the use of models, quick prototypes, graphic aids, and other forms

of nonverbal communication should be encouraged, as these give the user

something which can be "indwelled" ([Polanyi 67]), i.e., internalized.

This process of indwelling is most important, for it is the only way to

really know something. The "one picture is worth ten thousand words"

idea may sound too simple, but the replacement of words by actions can

give the user a better understanding of what is being developed. Thus,

by having something to indwell, the user will have the ability to make a

comparison with his internal model, which already exists. This could

not be done, and certainly is not done, with any of the static, formal

notation: currently in use for the specification of requirements.

The use of models, and their associated tests with actual end-users,

should become a part of the planned system development from the very

beginning. These pilot tests must be used for a sufficient period of

time to allow the user to get beyond any difficulties of novelty. They

must also be repeated many times after there are no more learning problems,

because thp nature of "participant behavior" is characterized by the fact

that the participant considers a number of hypotheses on each trial and

can only reject some, but not all, of those which are not consistent

with his internal models ([Posner 73]). Furthermore, users can more

readily reject undesirable qualities than affirm desirable ones,

39

probably because many of the desirable properties are part of their

tacit knowledge.

Finally, studies should be planned to further define/refine human

needs. Brooks ([Brooks 80]) states advantages of behavioral/psychological

studies which are important here for two reasons. First, we can affirm/

refute any behavioral assumptions which have been made. Second, such

studies give quantitative information on the relative effectiveness of

various techniques, thus giving us a solid basis for the selection of

new tools, new features, and new areas of concern. Careful selection of

the studies to be made can help reduce costs for the entire project by

confirming at an early stage that any of a number of quality-control

attempts are, or are not, successful. We should be most concerned with

the ideas of simplicity, psychological acceptability, the "engineering

out" of errors, and the bounds on human performance ([Shneiderman and

Mayer 79], [Shneiderman 79], [Shneiderman 80]). Scientific experimentation

during the requirements phase can help assure that the developing product

will meet any of a number of such goals, and at a lesser cost than if

these are ignored until later in the project lifetime.

There may certainly be economic considerations anddevelopmental time

limitations to restrict the amount of experimentation involved in a

particular project. Time constraints on the end-users may also be a

factor. However, the nature of human factors is such that they are very

amenable to a type of requirement which specifies that a study or experi-

ment be used to further define some quality of the end-users' environment.

The life-cycle of a project may easily be long enough so that, with good

modularization of requirements, such studies can proceed in parallel with

some of the other work on the project.

40

Our section on human factors is intended, like the rest of this

document, to serve as a checklist for topic inclusion. Many of the

suggested areas should be cross-referenced with proposals, milestones,

and experiments as in the section on system development. Note that the

issues raised in this section should follow from the broadest possible

interpretation of human factors--we intend for the requirements to

consider a wide range of psychological factors, e.g., user acceptability,

motivation, and the work environment.

We have been deliberately vague about the types of pilot tests,

models, and other nonverbal communication tools the engineer may find

of value. This is an area where much research needs to be done to dis-

cover what types of prototypes work best for the desired interaction

between user and designer. Kaplan has performed some studies with

architects and users, and his results indicate that simplicity helped

avoid much confusion on the part of the user ([Kaplan 76]).

Another example concerns the use of the "operational" requirements

specifications mentioned in Section 4. The requirements consist of an

executable nodel of the proposed system interacting with its environment,

and this model could be exercised interactively to provide demonstrations

to users. This is a promising direction--since functional and performance

requirements at all levels can be incorporated into the formal specification

([Zave 79a], [Zave 79b]), the model could provide a basis for conducting

many of the2 experiments proposed in the requirements document. The

next question, however, is how can system behaviors be conunicated to

the user? What tests of the system should be performed? How can the

information be made suitable for indwelling by the user? These are

issues relating to nonverbal communication which deserve imrediate attention.

41

7. Conclusion

This report is by no means a complete survey of current knowledge

on requirements. Some of the best-known approaches have been given

short shrift (although they have already been widely reviewed). We

have made no attempt to survey tools, even though it is apparent that

automated database facilities for requirements information, however

primitive, may be tremendously helpful.

The significance of this article, in our view, is that we have

included the "forgotten" areas of requirements: process-oriented as

well as data-oriented requirements, nonfunctional as well as functional

requirements, and human factors. We have stressed the newest and (to

us) most promising approaches, over the familiar and (to us) inadequate

ones.

We believe that the problem of deriving good requirements can be

solved in three stages. The first concerns discovering, understanding,

and describing informally the users' requirements (interpreting "user"

in its broadest sense). The second involves constructing a conceptual

model which integrates and consolidates different user views. The

third consists of specifying a system to meet the requirements in an

executable language, and validating that specification.

Although we have categorized specification languages on the basis

of system types, theyalso fit some of these stages better than others.

PAISLey is a good candidate for an executable specification language,

but a structured data model expressed using semantic nets many make the

best all-around conceptual model. And for first-stage

description of users' needs, application-specific, user-oriented

languages are clearly called for. It is our belief that a general

framework for such languages can be developed on the basis of a case-

structured syntax. These are the directions which researchers

will be pursuing in the near future.

Acknowl edgev nt

The research reported on here is partially supported by the U.S.
Air Force under Contract AFOSR-77-3181B, and by the U.S. Army under

Contract DASG60.-80-C-0024.

43

t~ir Fcerco ^t7i r u 9,¢t0 ., "Air F r c . ea~no s rt fect iv*'ress Ilest 1,-j
I n sT I ruc-rt,3 t ion " s t ° ., E vh i~ "r, iS~ C-

a ir r rfv i n ,r u nf nt rr q t in Air rorco asp torica

S for,;, .aCk, a;k t~u iremtqnt- ,rnr i r e i n(- A t-Th c-JoL cc;v fr r

r c s-Ti p ."rI'c"ssin. ; Ireirent ," !E E Trans,,ct ions c n

f s r~ ,r et na mf ri _ I-]

h t . r an i!- "' , r- -, I, " vsts - 0: reLti 'nAI : rrc c r,

t ,i , ", e a t.n n A T r r n aLtjt ons on tr : r s th 1,m

s inl S ei 1 e] r
.,cki i , Jajhn, it n . r rrj-r i r I nort .L1 ra. J hr v" n
k-r nn t vLt A Func Ii vr.a k ey kp jr, t 1 - I.,: r~
r cr.7 r ,r .*,* C - .n i c- 5 t I -r) f t t -A'. S-Vt

tS e~ ~.,p r 7

:r, vesA a.tiom of hiuman F r tc rs im cfft.ar e rnginoerrnq.,"

'_ is'_E .t L. 1 , D * ,,-Tre C rctr9 r s1t-i c s
Lr> %c v e s, -e e rarch I1rection i, So't o. Tec rec cr,

f e r. p .j er.

t Tno' s, iL-r, avi', and y(-r, aar-:dret "n
r5.Fnu.L ,piroacn tu Cw;uter-Aicdou 5 ft.rre cuirem-nts

"^n-rinn Concontnsatuens n .of01ar'1 'ovtr'nt"r

r.* i'G *1n~ -'-"

u i r y 1' -' - -l - - -l , ¢ris r b t o - ,
-

" C rCL "

7 "~
, - i,. r r v Conctrtre CO' ia t n m Ch S. "" "I, C Ott . r

ti n , r .y Al 2C 1 -- 1 7 3 r

Ur.ookS. ; UV"r r. , "ctLudying "rO rT,r 'tu'dvCrr
Ir.rer rnt, L : T9re t rot' n.1 of t:rcr.rr cPt hCrOPOn> ."

¢C'.~gi duni i c* tv-O ' Lmunications o r t ha' -
-(su r jok , .t ;, t u v . int) rt l I i r o r ,,' n Pr d i rL' ,r

-- m ~ ,n dilafl~lt c al tr-v in on-iv srr ,

c :u i r e r n t s i it i mn rrc. ein e C1, 2F '.C r ,Y t, ,.r.,r.

:rcnrpr7

s .4 r r ~ 'r t"Imte nv r tiy T Al ~u st irv re t-r u(tj ViC0

jvi't .u rL ', utj VC , C.rtns _C,

'I ?LS 03 B&qST WjA.I21 4&#S4AI.'a
v J-ntnA

J

r'

,e €*",,

kV

'I4

un smore i..nnon 7V -
:"nsmr,- H. I., ard 6annun, J. Ds, ',ta e er-nc in : t n
r, c r at -a

L'oare 7]
Lrp ,nm ~ . u un i cj t in reau.erti~k Proct-ss

-,.,mutn c a t i nrs o + th gu " u ust 1 9 .- o. e6 7

L1c rnin" . L rde[7
IJC rriri'1, J. J a rnj 8 n , , r d ro0 S Structuri : ,
r.O -cut r - S urv s J, .u ry 1';73, lr. 5-r

Ja e s, (i m, lsv C k :.v V r T r iefer rc r~t U r pPr, 2 r,

LJi'. n T T -2 ---]

LF jcc C' h n ' i1 1 J -n q :, = - 5

, r~ e 7 ,n c rzA].L t i.. rc. c es sr S -Et s t t tus Pf 'r ir j" LC~~ Y r Jv S

t;Ln. ,te, L n, "dr z ici tio in t hei r roc s "
°S cC ,' ICu , srsoer t iv Ps o F nvirr.-,''t r, a v r

"L m n . r., "1 5 roz r. m,- i ce a n c, fo t .r e L 4

r: ct , ;roc : in:" ot the IrLE t, -Snt ic:r e r C, tc a c ir.

I titrurri Yurh .

v~tter oLr, ru.. "-rIicatiar a' %ota'a'te Le~icr r~C{*

t a t re tquirom rts flysjs," pF p S S -T1 kCI , t t it;t
1i t nI, echni!.che lrivefr it et I1en, .Ien

i " t tt r 'r ir c . j'

. ,t Tr rA ro r L 'I c, , ui stitut Ln3 r t.i S Stal- A I ,

chn I c-e eiverSit a t .ipn, Wien e n " -Z

1 C
r *n :, E c., "r t reec rr cti t I w.r Ls I n Lo.e c c i-

I P, , -, 1L r-s
r

a " m..... om o!7

L c r Sr.,, n. s { a W'.

wr c ~r T!s, -or -u i a n -f - ~ -(' -". "-a -2 - -
I,rr S 7tm~rna5. . L., "Lt' ianirt , r'c twarr - for [,r ri 1 ten! c.' .,-,;

"c r.,¢t iof," j-f rr,"sjctiors Qfn _ 2tw'r, r ._iL ,2- ",
"'.,rcPh ',4, r;J-1'-------

,,'rs -r , a' a',,CI t ' t i ' t , ~ W) r Z
E tt,-n . r 1 *77, r 'u, " '- 5'.

u, lc£7, ; -' .

.Ju i c rJI TI,7 tchor c

45

Irosner1)
rcsne r '~c .L ', Co' nitior: An 'nr0- U- Ct0 D Scot I
FreSmn Ia Comrpar?, 73-;--.-

Lruss 77]
rojsss nou~tasp '.;tructijred -natyvii (r/): A Lan'.acEc frr
Conrnunicatino, lris (IrvltE lransactior , o-' Sc~tware
Frininer.rina It Janua ry -c;;~ ----r-

(ro,,s &)h~a 773
%usso Cou~lts, ard fchc"'an, wenflept9 i. Jr., "Stricturea
Anakysis fo0r re uir ee n t s finit ion," JFrt. Trams3)j!1ons r r

~L u SC D0u t 0u S 3.;
rc'isso-outLous, ;.iC'40 td', "fSPL: A Conceptuji -cnima Le nit ien

L ,n. u~re for t h e e s icn cf at Fa ve A[., LjCal ion!," !r'

Transactions-------------oftwdr2 rnpineerir.a ', Se;ttmnter jZ. r

r c.,e icerryan 7,;l

!rterdctjve 'ySten.,, Conpyt. r 1.2, Ottckmhur 7-*, r. -c

c m n i ~ ,r a n
n . r-an En ''.oleri1 clyh~~, rf1 j~iF C s, ir

Sreiaerman, ~en ant 'aer ichard, ryfltact 1c/'"irtic
!ntpr- -ctions in Frocrammer reavior: I P' and Exieri-et,lt
-t-CuLts, I" nt. JournaL of Co,"yuttr 22 Inforr,.tion Scienci7 :

e1i mc n i 'rt- e rt . Th ' cience s ofT tep ~r t if ic imL r P

!;orC,.ch to loftwa't, sw~eciiicatior,, Frc'ecdincs :Cft,..jre
tveLarirpot 'o,)Ls .. rk sno, 0 ino r,?# P6rk, Cot~d',%y

o0 L i .- r St e, ten .*, "Os in I..-:) Lie ativp e'Chri.L."s tc 't in

' f t jr$- Con'lereicr, Cp,nbridie j s s A pr i ? S*t'C1

o l i j~r , ' te r ?.en rI. . , " P n Li c ~ti ve ' a n Fu ri r L t ir o e-rI r -j rr T i r) t
L f t --ire E-(-in e r in ; r:n'-uopl, C . V a Ima r n L-r t tiy 13n ; C h 6rL I

a e Ir j

r c r.rirjc aL Vala," T Z.1 5cf t . a r eries, TPW-SS-/-4 i,, 4

i c r w ershey '

'C % u t 1r - A iu t- e ch n inu p t r r Siructurpa % .tci
r~d L y 1i S f' r. o rma tjion S y 5 wrs, e 1IIr rascir

f~~ 4~ -~1~a 1i m e J-*-."17,F-

46

F,. t. r, ", k 0,, f,: g rt r ' "j m C. r rmp p I "btC C o ' " .

C r a i t i C -i ., v t i (A , ' C T ' i -T t 6 i .i T ' { : ZF ' # -1 1

'i ;rT C 7Q J

Cc r.municalio n2 2: i '. u Q 7 7. "I- .1I.

Y t - yf;Oa 3. y "oyste!,. t ic nerivat in ec Tw r
t. , u i r n t S h, r 0u; S t ructure n a (y t i, z r,-ut er . i rrq' -- ' , Univp¢Si ty Gf Ttsac a t ,USt im , .t , r ,

Ye ' p 7-nr n. a , r.'1 i L v v ,m@ e t, , I rtn t ,
o ,.u r~fren S," Pr .Cre . 1 7 1S .r_ th r c - r .l ,b r ,, '

pe, s r 1 , ", iire o r n t e,
-a 1 r ~ - ----'

t, 3 e ri~ s~o i[Ckc .r c t ' u r e p7 ,
'c .-. I? r1*i, - s . .~ ,,~ro'~ to p u -

r'ir v - r L P.t t- n r, C Y C i c k r I L %, , o"..r 1 7

. a v', ?o .'
.!, , r a o r a I %)Pc i iL ticr C 4 C rc Let e * 'r0: ZOP5 st'r> rf , ra C r- e,; i rr-. n s, r r oceeP i u T x s C o p qr r ce 1

C rr LtUt n
"

v s m s, LcvIa'Y5r I . " - -

4' y
v' a er

r u Ir n c C T-nc T 01 nicaL o k=.r t, in rea rat ioa, raE.t

Y e y'b c ut,,r, le r trer s

.r fl' t,* ,: =t h as1 C S ," s ntC- i ti rcrt ion .

14'. r V%1 T I,-?L f, me

def TEST-ELEMENT:

sub PLANE, SHIP, GROUND-DEFENSE-POSITION, TARGET

com ROLE

end

def PLANE:

sub B-52G, F-4C

com AIR-POSITION, WEAPONS

end

def SHIP:

com SURFACE-POSITION, WEAPONS

end

def TANK:

corn SURFACE-POSITION, WEAPONS

end

def GROUND-DEFENSE-POSITION:

com SURFACE-POSITION, WEAPONS

end

def TARGET:

sub BRIDGE, DEPOT

com SURFACE-POSITION

end

def AIR-POSITION:

com SURFACE-POSITION, ALTITUDE

end

def BATTLEFIELD:

com TEST-ELEMENT*

end

def TEST:

corn FRAME*

end

def FRAME:
-com TIME, TEST-ELEMENT*

end

Table 1. AFWET type definition.

Table 2. A major step in display design is determinatin cf speciicatins

for the following:

A. Data Rates and Response Times
i. updating response time
2. rates of change of display dita
3. display access time
4. display requeL rates

B. Amount of Data
1. amount of display inforrati-n
2. number of display units
3. display sizes
4. audience size

C. Types of Display
1. coding
2, symbology
3. display formats

0. Visfbiity
1. luminance
2. ambient lighting
3. contrast
4. resolution

E. Quality

1. accuracy
2. distortion
3. flicker

FLORIDA - ,

"kill" "position",
messages "firing"

messiges

CENTRAL SITE
(real-time simulation)

Figure 1 The AFWET system.

ENVIRONMENT TARGET ")YSTEM

LSTATE
of entities in activities
envi ronment

events STATE
of target system

Figure 2. A conceptual model.

(UNDECOMPOSED COMPLEXITY)

ABSTRACTION

I I IO

©0@0
I i I

Fiu, 3./Three\waystodcomposecomplexity

Figure 3. Three ways to decompose complexity.

FIING-MESSAGE

Pal) IT TON-
M ~ ESSAGES 1

DA1TLEFIEL fight i a T

KILL-MESSACES

Figure 4. AFWET dataflow.

test-
eieiment
processes

position-,
firing- kill-messages
mess ages

radio-
tower
processes{

timestamped ____
messagesprcs

Figre5.troese of theAFWET ystem

ENVIRONMENT
SY S.

"tes t-o eme'en t"

Data- (data components

Oriented , 2

Model

Ti t l t o
I I aI "e

I I I I

Process- I t I i - //
Oriented I 1
Model l -,

test-element process /

interaction

Figure 6. The AFWET environment model, projected onto process-oriented
and data-oriented views.

II

